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a b s t r a c t 

Among the most complex problems in the field of 2-dimensional cutting & packing are irregular packing 

problems, in which items may have a more complex geometry. These problems are prominent in several 

areas, including, but not limited to, the textile, shipbuilding and leather industries. They consist in placing 

a set of items, whose geometry is often represented by simple polygons, into one or more containers such 

that there is no overlap between items and the utility rate of the container is maximized. In this work, 

the irregular strip packing problem, an irregular packing variant with a variable length container, is in- 

vestigated. The placement space is reduced by adopting a rectangular grid and a full search is performed 

using preprocessed raster penetration maps to efficiently determine the new position of an item. Tests 

were performed using simple dotted board model cases and irregular strip packing benchmark instances. 

The comparison of our results with the state of the art solutions showed that the proposed algorithm 

is very competitive, achieving better or equal compaction in 9 out of 15 instances and improving the 

average density in 13 instances. Besides the contribution of the new best results, the proposed approach 

showed the advantage of adopting discrete placement, which can be potentially applied to other irregular 

packing problems. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Cutting and packing problems are important in different areas,

uch as the textile, wood, glass, and shipbuilding industries and are

hus regarded as an important research field. Finding efficient so-

utions for these problems may generate significant economic and

nvironmental benefits. The basic outline of a packing (or cutting)

roblem consists in assigning items to containers and arranging

he layout such that the combined utility rate of the containers is

aximized. 

Irregular strip packing, also referred to as the irregular nest-

ng problem, is studied herein. Proposals to solve this subgroup

f cutting and packing problems must be capable of dealing with

rregular shaped items, which is a complex task. The objective

s to obtain the most compact configuration of items that can

e placed into a rectangle container with a variable dimension.

ue to the limitations of practical applications, each item can

nly be rotated by a finite set of angles, which may include

 

◦, 90 ◦, 180 ◦ and 270 ◦. According to the typology proposed by
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äscher, Haußner, and Schumann (2007) , the variant considered

erein is the 2-dimensional irregular open dimension problem. 

In a textile application, using automatic computer-generated

utting patterns that minimize the volume of wasted material fre-

uently provides a huge improvement over manually developing

 layout. However, as the problem is NP-hard ( Fowler, Paterson, &

animoto, 1981 ), it might not be possible to obtain the optimal lay-

ut in a limited time frame for large problems. Therefore, for solv-

ng a wider range of problems, a heuristic approach is adopted. To

chieve a more efficient solution, the search space is reduced by

dopting a grid placement for items and the layout is determined

y an overlap minimization strategy. Moreover, the raster penetra-

ion map tool is proposed to reduce the online computational cost

f computing the overlap value. So as to properly test the quality

f the layouts, the proposed solution is executed by using dotted

oard cases and irregular strip packing instances from the litera-

ure. Even with the placement limitations, the results show that

he algorithm is capable of achieving better solutions than the best

pproaches in the literature. 

This text is structured as follows. Section 2 contains a brief lit-

rature review on irregular strip packing, which is described in

etail in Section 3 . Section 4 describes the proposed method to

valuate the overlap efficiently with the raster penetration map.

https://doi.org/10.1016/j.ejor.2019.06.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2019.06.008&domain=pdf
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This evaluation is employed in a separation and compaction strat-

egy, described in Section 5 , to solve the strip packing problem.

Section 6 shows the results from the proposed algorithm ROMA

and a comparison with results from state-of-the-art approaches

in the literature is made. Finally, the conclusions are drawn in

Section 7 . 

2. Literature review 

The irregularity of shapes is a singular characteristic in irregular

strip packing problems, which leads to a reduced number of publi-

cations in the field ( Bennell & Oliveira, 2008 ). Due to its complex-

ity, advanced geometric tools are employed to avoid overlap be-

tween items. In the literature, the main geometric tool is the nofit

polygon, which was proposed by Art (1966) . Bennell and Oliveira

(2008) made a review of geometric tools for irregular packing

problems. 

Aside from the geometric restriction, the main challenge to

solve the irregular strip packing problems is to develop an effi-

cient search strategy, i.e., an algorithm that consistently generates

layouts with high compaction in a small time frame. Mathematical

models are capable of finding the optimal solution for small prob-

lems or instances with some special characteristics. Alvarez-Valdes,

Martinez, and Tamarit (2013) developed a branch and bound algo-

rithm based on a mixed integer formulation and were able to solve

instances of up to 12 items. Cherri et al. (2016) adopted a robust

mixed-integer linear programming model by convex decomposing

items, which showed slightly improved results, which was later

improved by Rodrigues, Cherri, and Mundim (2017) with new sym-

metry breaking constraints. Larger instances were optimally solved

by Toledo, Carravilla, Ribeiro, Oliveira, and Gomes (2013) , but with

placement and item assortment limitations. Rotations are usually

not considered in most exact solutions. Two exceptions include the

works by Jones (2014) and Wang, Hanselman, and Gounaris (2018) ,

which use a circle covering representation of the shapes and find

optimal layout with up to five items. 

Heuristic solutions are often employed to obtain solutions for

medium and larger instances with discrete rotations. There are two

main strategies employed in the literature: the search over the se-

quence and the search over the layout. The main difference re-

sides in the layout representation: in the former case, the layout

is represented by a sequence of items, whereas in the latter, the

position of each item is directly represented by a pair of coordi-

nates ( Bennell & Oliveira, 2009 ). This directly impacts the search

strategy. Search over the sequence solutions insert items sequen-

tially into the container, without overlap. In the case of the search

over the layout, items move freely and a separation method is usu-

ally employed. 

The most popular constructive heuristic for search over the

sequence uses the bottom-left policy. A greedy implementation

of the bottom-left heuristic consists in alternating vertical and

horizontal translations until the item is unable to move. Then,

the challenge is to determine the placement sequence. Pinheiro,

Amaro Júnior, and Saraiva (2016) adopted a random-key genetic al-

gorithm to control the sequence and item rotation and a parallel

implementation of this strategy was developed by Amaro Júnior,

Pinheiro, and Coelho (2017) . A constrained placement rule was en-

forced by Mundim, Andretta, and de Queiroz (2017) to reduce the

search space and to accelerate collision detection using the no-fit

raster. Burke, Hellier, Kendall, and Whitwell (2006) modified the

greedy bottom-left layout construction by discretizing the horizon-

tal search and applied a hill-climbing tabu search. There are a few

strategies in the literature that employ other constructive heuris-

tics ( Oliveira, Gomes, & Ferreira, 20 0 0; Sato, Martins, & Tsuzuki,

2012; 2015; Xu, Wu, Liu, & Zhang, 2017 ). 
Most efficient solutions in the literature adopt a separation

nd compaction technique, which utilizes the search over the lay-

ut strategy. Two algorithms are usually applied to obtain a com-

act valid layout: separation and compaction. Li and Milenkovic

1995) proposed a position-based optimization model for compact-

ng and separating irregular packing layouts. The nofit polygon is

sed to generate artificial constraints to generate a convex feasible

olution space. This model was adopted by Bennell and Dowsland

2001) to generate valid layouts using a tabu search heuristic.

omes and Oliveira (2006) hybridized the compaction and separa-

ion algorithms with a simulated annealing algorithm. At each iter-

tion, the separation and compaction algorithms are executed se-

uentially, generating a new layout. The meta-heuristic simulated

nnealing is applied to escape local minima. 

.1. Overlap minimization approach 

One of the major difficulties when adopting a search over the

ayout strategy is to guarantee the feasibility of the final layout.

verlap minimization techniques circumvent the issue by fixing

he length of the container, simplifying the separation and com-

action procedures. The layout compaction is then achieved by

equentially reducing the area of the container. Then, an overlap

unction is defined to relax the geometric restrictions. 

Bennell and A. Dowsland (2010) proposed an algorithm which

liminates overlap by applying a tabu thresholding heuristic, in

hich the overlap function was the minimum horizontal dis-

ance separation. Egeblad, Nielsen, and Odgaard (2007) proposed

n overlap minimization algorithm based on a method proposed by

aroe, Pisinger, and Zachariasen (2003) to solve a bin packing prob-

em. At each iteration, a one-dimensional evaluation of the overlap

unction is performed to determine the translation for each item.

metani et al. (2009) proposed the use of the directional pene-

ration depth to measure the overlap between items and applied

t to a guided local search heuristic. Imamichi, Yagiura, and Nag-

mochi (2009) and Leung, Lin, and Zhang (2012) solved the overlap

inimization problem by using a non-linear programming model,

oving all items simultaneously. Elkeran (2013) proposed the use

f the meta-heuristic cuckoo search to perform a two-dimensional

earch for the least overlapping placement for each item. Wang

t al. (2018) applied an ant colony flexible labour division to as-

ign up to three actions for each item. The popularity of overlap

inimization solutions in the literature is due to the consistency

nd quality of their results. 

.2. Dotted board model 

Allowing for the free movement of items inside the container

reates a large continuous solution space for the irregular strip

acking problem. This complexity is one of the reasons for the

ifficulty in developing mathematical solvers to obtain optimum

olutions. In order to circumvent this limitation, Toledo et al.

2013) proposed the dotted board model, in which the placement

pace is restricted by a grid. A similar constraint was already con-

idered by Bennell and A. Dowsland (2010) , which limited the

eighborhood of the metaheuristic to the movement of an item

ithin the grid. 

In this work, we solved the dotted board model by using a

euristic approach based on the overlap minimization strategy. A

rid space is adopted to allow a more efficient search for a new

andidate when inserting an item into the layout. The proposed

pproach updates the solution from Bennell and A. Dowsland

2010) by applying the guided local search metaheuristic, which

as gained popularity among some best algorithms in the liter-

ture ( Elkeran, 2013; Umetani et al., 2009 ). It also develops and
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pplies the raster overlap map, which transfers computational load

o a preprocessing stage. 

. Problem description 

The irregular strip packing problem is a two-dimensional pack-

ng problem in which a set of items must be placed into one rect-

ngular container in a valid configuration. The shape of items may

e irregular and is herein represented by simple polygons. The

ontainer has a fixed width and a variable length. The objective

s to obtain a feasible solution which maximizes the density of

he configuration, i.e., minimizes the length of the layout. Up to

our orientations are allowed for each item: 0 ◦, 90 ◦, 180 ◦ and 270 ◦.

he geometric constraints are: (1) an item must not overlap other

tems; and (2) items must lie completely inside the container. 

A polygon P , with m edges, can be represented by an ordered

ist of its vertices { (x 1 , y 1 ) , (x 2 , y 2 ) , . . . , (x m 

, y m 

) } . Consider a set of

imple polygons P = { P 1 , P 2 , . . . , P n } , which represents the geom-

try of the items. The container is represented by a semi finite

ectangle C, with the fixed dimension parallel to the y axis. When

ecessary, an item with a specific orientation is expressed as P ( o ),

here o is the angle of rotation of P . Operator ı( P ) represents only

he interior of P and P � v corresponds to applying a translation

ector v to P . O is the set of admissible orientations for the items,

hich are typically multiples of 90 ◦. A solution to the problem

s described by a set of translation vectors { v 1 , v 2 , . . . , v n } and a

et of orientations { o 1 , o 2 , . . . , o n } . L is the length of the smallest

ontainer which contains all the items. The irregular strip packing

roblem can be described as 

minimize L 

ubject to ı (P i (o i ) � v i ) ∩ (P j (o j ) � v j ) = ∅ , 1 ≤ i < j ≤ n 

(P i (o i ) � v i ) ⊆ C, 1 ≤ i ≤ n 

o i ∈ O, 1 ≤ i ≤ n 

v i ∈ 	 

2 , 1 ≤ i ≤ n 

L ∈ 	 + . (1) 

.1. Overlap minimization problem 

In overlap minimization techniques, the container has fixed di-

ension and an iterated local search algorithm is usually adopted

o solve the original problem. At each iteration, the length of the

ontainer is changed and a feasible layout is searched by relaxing

he no-overlap restriction. This is achieved by defining an overlap

unction and can be described as 

minimize 

n ∑ 

i =1 

n ∑ 

j= i +1 

f (P i (o i ) � v i , P j (o j ) � v j ) 

ubject to (P i (o i ) � v i ) ⊆ C, 1 ≤ i ≤ n 

o i ∈ O, 1 ≤ i ≤ n 

v i ∈ 	 

2 . 1 ≤ i ≤ n 

(2) 

here f is the overlap function for a pair of items. Its value must

e zero when they are separated, and positive otherwise. Thus,

hen the cost function is zero, it implies that all the overlap func-

ions are zero; therefore, the layout has no overlap. 

.2. The dotted board model 

The dotted board model limits the placement of items by us-

ng a rectangular grid. Therefore, the coordinates of the translation

ectors v i are expressed in grid dimensions. If g is the square grid

tep, then 

 ∈ { (x, y ) | x = k · g , y = l · g} (3)
i 
here k, l ∈ Z . 

. Overlap evaluation 

A common strategy is to relax the overlap restriction by penal-

zing the objective function. In overlap minimization solutions, the

omplexity of the problem is reduced even more by fixing the di-

ension of the container. Thus, the objective function is reduced

o the penalization function, which is defined by the overlap func-

ion. The selection of this function is an important factor when de-

eloping a solution. 

As items are allowed to move freely, the search space is contin-

ous and, consequently, more difficult to explore even by heuris-

ic approaches. To reduce the solution space, a placement grid,

hich limits the choices for positioning items inside the container,

s adopted here. Thus, the overlap function only evaluates the ob-

ective function at grid positions. This is efficiently achieved by the

se of a novel geometric tool: the raster penetration map. 

.1. Basic geometric concepts 

The basic geometric tools are presented herein, as these con-

epts facilitate the understanding of the employed adapted geo-

etric tools. The most popular geometric tool to detect overlap

etween a pair of irregular items is the nofit polygon. 

For two items, the nofit polygon describes all the overlapping

onfigurations. In order to determine the nofit polygon, one of the

tems is classified as the fixed item and the other as the movable

tem. The nofit polygon represents all the translations that, when

pplied to the movable item, causes it to overlap the fixed item

see Fig. 1 (a)). 

The other important geometric tool is the inner-fit polygon,

hich is derived from the nofit polygon. It represents the transla-

ions that place the movable item completely inside the container.

y defining a reference point, the inner-fit polygon can be mapped

nto a region in space, as shown in Fig. 1 (b). 

In most cases, overlap minimization techniques do not relax the

ontainer protrusion restriction, with some exceptions ( Imamichi

t al., 2009; Leung et al., 2012 ). Therefore, the inner-fit concept is

mployed directly to ensure that all items are completely inside

he container. In overlap minimization techniques, the nofit poly-

on is often used to aid the determination of the overlap function.

.2. Geometric tools for the dotted board model 

In the dotted board model, the placements of items are lim-

ted to discrete points in space. The set of points are limited to a

niform distribution, creating a square grid. Moreover, to simplify

athematical formulations, the reference point of the items is al-

ays set at the origin and, therefore, coincides with a grid point. 

Both the nofit polygon and the inner-fit polygon can be directly

pplied to solve the dotted board model problem. However, as the

lacement is discrete, only a finite subset of the translations de-

cribed by the geometric tools is needed. Therefore, adapted ver-

ions of the geometric tools are employed here. 

The discrete nofit polygon represents all the grid translations

hat, when applied to the movable item, causes it to overlap the

xed item. It is a finite subset of the nofit polygon, as can be ob-

erved in Fig. 2 (a). The discrete inner-fit polygon describes all the

ossible grid placements for a given item (see Fig. 2 (b)). Given the

et of grid points G, the discrete inner-fit polygon induced by con-

ainer C to movable item P , denoted �(C, P, G) , can be defined as

(C, P, G) = { v | ∀ a ∈ ı (P ) , a + v ∈ C , v ∈ G } . (4) 

Note that both the discrete nofit polygon and the discrete inner-

t polygon can be obtained by rasterizing the nofit polygon and
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Fig. 1. Geometric tools examples: (a) nofit polygon and (b) inner-fit polygon. 

Fig. 2. Geometric tools for the dotted board: (a) discrete nofit polygon and (b) discrete inner-fit polygon. 

Fig. 3. Determination of the penetration depth of a pair of items. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Raster penetration map example. 
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the inner-fit polygon, respectively (see Fig. 2 ). This is achieved by

treating each point in the grid as the center of a pixel or a binary

matrix cell. 

4.3. Raster penetration map 

The proposed raster penetration map, which is the main tool

adopted herein, builds upon the adapted geometric tools from the

literature to efficiently determine the overlap. It retains the geo-

metric collision precision and uses raster methods to accelerate the

overlap determination while approximating the overlap value. 

The overlap function is a collision penalty function defined for

a pair of items. As such, it must be equal to zero when items are

separated or touching and, when there is overlap, it must be higher

than zero. 

The penetration depth is frequently adopted as the overlap

function in overlap minimization solutions. It corresponds to the

norm of the minimum translation needed to separate a pair of

items. Then, given two items P i and P j , the penetration depth δ( P i ,

P j ) can be expressed as 

δ(P i , P j ) = min 

{‖ v ‖ | ı (P j � v ) ∩ P i = ∅ 
}
. (5)

When the items are not overlapping, the penetration depth is zero.

Fig. 3 exemplifies the penetration depth calculation. The penetra-

tion can be determined using the nofit polygon to aid the overlap

detection. 

The raster penetration depth is an approximation of the pene-

tration depth and defines the minimum translation, in grid units,

to a grid point to separate a pair of items. The discrete nofit poly-

gon can be employed to compute the raster penetration depth. It is

equivalent to the number of grid steps that correspond to the dis-

tance from the current reference point position to the closest grid

point not contained in the discrete nofit polygon. By multiplying
he results by the grid size, it can be converted to an approxima-

ion of the penetration depth. The raster penetration map defines,

n grid space, the value of the raster penetration depth of a pair of

tems for all the possible configurations. Fig. 4 shows an example

f a raster penetration map. 

The first step to obtain the raster penetration map is to deter-

ine the nofit polygon for the item pair. Then, it is rasterized ac-

ording to the adopted grid, generating the discrete nofit polygon.

ote that grid points on the contour of the nofit polygon should

ot be included in the rasterization results. Finally, to obtain the

nal map, the raster penetration depth must be determined for

ach marked grid point. It can be achieved by using the distance

ransform, which can be conducted in linear time in relation to the

umber of grid locations ( Felzenszwalb & Huttenlocher, 2004 ). 

The determination of the raster penetration map is a three-step

rocess. The entire process is illustrated by the example in Fig. 5 .

nce determined, the raster penetration map can be reused by ap-

lying the translation corresponding to the fixed item, similar to

he nofit polygon. Therefore, by calculating all the raster penetra-

ion maps in a preprocessing stage, the approximated penetration

epth can be directly obtained from the raster penetration map. 

Raster methods are usually employed in irregular packing prob-

ems to simplify the geometry of the items. The main drawback of

his approach is the low precision achieved for the overlap detec-

ion. Furthermore, the geometric tools available are very efficient

o deal with simple polygons. In the case of the raster penetra-

ion map and the discrete inner-fit polygon, the rasterization pro-

ess does not impact the precision of the overlap evaluation. As

hese concepts are used as a foundation for the method introduced

n this work, the collision precision of the proposed approach is

quivalent to nofit polygon-based algorithms. 
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Fig. 5. Raster penetration map determination. 
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. Separation and compaction algorithm 

This section describes the proposed separation and compaction

lgorithm, which uses the search over the layout strategy to solve

he irregular packing problem. The main challenge that search over

he layout approaches face is the simultaneous management of two

bjectives: overlap elimination and layout compaction. The pro-

osed approach adopts the overlap minimization strategy, which

voids this difficulty by fixing the length of the container, thus cre-

ting a pure separation sub-problem. 

The objective when solving a strip packing problem is to obtain

he layout with the highest density. In this work, the separation

nd compaction technique adopted is very straightforward: when

 separation is successful, the container length is reduced; other-

ise, the container is expanded. Parameters r dec and r inc control

he reduction and expansion of the container, respectively. In or-

er to encourage compaction, r dec is usually higher than r inc . The

ength value is rounded to the nearest grid point. Algorithm 1 de-

ails the separation and compaction technique. The round function

ounds the number according to grid step g given by the second

arameter. 

lgorithm 1 SeparateAndCompact. 

(x, o) ← < generate bottom left layout > 

L, L best ← < container length > 

while < time limit not reached > do 

if SeparateLayout (v , o) = successful then 

L best ← round(L, g) 

L ← (1 − r dec ) · L 

else 

if (1 + r inc ) · L < L best then 

L ← (1 + r inc ) · L 

else 

L ← (L + L best ) / 2 

end if 

end if 

if round(L ) ≥ L best then 

L ← L best − g 

end if 

< container length > ← round(L, g) 

end while 

A modification proposed here is to only allow lengths that are

nferior to the best feasible solution found. The aim is to reduce

he exploration of less compact solutions. When expanding the

ontainer, if it infringes this restriction, the midway point between

he current and the best length is adopted. Due to the grid con-

traint, it is possible that the value is rounded to the best length.

n this case, the length is reduced by one grid step. 

When the length of the container is reduced, some items of

he layout may protrude from the new container. In this case, be-

ore the next iteration of the algorithm, all the protruding items

re translated horizontally into new positions inside the container.

his behavior of the algorithm is displayed in the example in Fig. 6 .
So as to apply the compaction technique, an initial length must

e determined. We employed a bottom left heuristic to obtain a

easible initial layout. The initial solution is constructed using a

equential placement with a random ordering of items. For each

tem, discrete inner-fit polygon points are evaluated for overlap

n a bottom-up, left-to-right sequence. When a position with zero

verlap is found, the item is placed and the next item is processed.

fter all the items are placed, the container length is set to the

ength of the layout. 

.1. Separation algorithm 

Heuristic approaches usually modify the layout by applying one

r two operators at a time, with some exceptions ( Imamichi et al.,

009; Leung et al., 2012 ). The two main operators are swapping

he position of two items (swap operator) and moving a single

tem (insert operator). In both cases, an operator that changes the

rientation of the item is applied in conjunction with the main

odification. 

When an overlap function is adopted, it is possible to assess

he quality of a single item placement by analyzing its overlap

alue. By using this property, insert operators can be considered

he best option to generate a new solution, as they handle each

tem individually. A straightforward local search based on this op-

rator usually quickly leads to local minimum solutions. The solu-

ion adopted herein is to use the guided local search metaheuristic.

.1.1. Guided local search separation 

We adopted the guided local search used by Umetani et al.

2009) to avoid local minimum solutions. It applies local modifi-

ations to the objective function by using weights. The modified

otal overlap function can be expressed as 

 

′ (v , o) = 

n ∑ 

i =1 

n ∑ 

j= i +1 

w i j · δ(P i (o i ) � v i , P j (o j ) � v j ) = 

n ∑ 

i =1 

n ∑ 

j= i +1 

w i j · f i j 

(6) 

here w i j and f ij are the weight and overlap associated with the

tem pair ( P i , P j ), respectively. 

At the start of the packing algorithm, the value of all weights

s 1. In order to escape local minimum configurations, after each

eneration of a new solution, the weights are updated using the

ollowing rule 

 i j = w i j + 

f i j 

max k,l ( f kl ) 
(7) 

here 1 ≤ k , l ≤ n . Algorithm 2 details the proposed raster guided

ocal search separation. At each iteration, the solution is modified

o as to minimize the value of the modified total overlap function.

he algorithm continues until a feasible solution is found, i.e. the

otal overlap is zero, or a number of iterations without improve-

ent ( N ) is reached. 
mi 
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Fig. 6. Example of the compaction strategy ( Imamichi et al., 2009 ). 

Algorithm 2 SeparateLayout (v,o). 

numIterations ← 0 

minO v erlap ← + ∞ 

while numIterations ≤ N mi do 

(v , o) ← ModifySolution (v , o) 

cost = 

n ∑ 

i =1 

n ∑ 

j= i +1 

f i j 

if cost = 0 then 

return (x, o) 

end if 

if cost < minO v erlap then 

minO v erlap = cost 

numIterations = 0 

else 

numIterations ← numIterations + 1 

end if 

w i j ← < updated weigths > 

end while 
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5.1.2. Modifying the solution and the obstruction map 

The solution is modified by translating one item at a time, re-

ducing the overall overlap value of the layout. In order to aid the

search for a new position, the item overlap function is defined as

the sum of the overlap values between one item and the remaining

items in the layout. Hence, an item overlap function I for an item

P i , translated by a vector z and rotated by an angle θ is defined as

I(P i , z, θ, v , o) = 

n ∑ 

j =1 , j � = i 
w i j · δ(P i (θ ) � z, P j (o j ) � v j ) . (8)

Consider an item P i and a container C. The obstruction map as-

sociates all translations x contained in �(C, P i ) with its item over-

lap value given by I(P i , x, o i , v , o) . It can be calculated by adding up

all the corresponding raster penetration maps for a given item, re-

stricting to positions from the discrete inner-fit polygon. This pro-

cess is described in Algorithm 3 and illustrated in Fig. 7 . Once

the obstruction map is fully determined, all the positions are

evaluated to define the minimum overlap placement, as shown

in Fig. 8 . The main advantage of the obstruction map proposed

herein is that it allows a complete search over the placement space

for every insert operator. Different approaches from the literature
mploy limited directional searches to determine a new position

fficiently ( Egeblad et al., 2007; Umetani et al., 2009 ) or adopt

ub-optimal solutions ( Elkeran, 2013; Imamichi et al., 2009; Leung

t al., 2012 ). 

lgorithm 3 CreateObstructionMap ( P i , θ , v, o, G). 

Map ← < new map filled with zeros > 

for each P k ∈ P where P k � = P i do 

for each pos ∈ G do 

if pos ∈ �(C, P k , G) then 

Map { pos } ← Map { pos } + w ik · δ(P i (θ ) � pos, P k (o k ) � v k ) 
end if 

end for 

end for 

Algorithm 4 performs the proposed solution modification.

irstly, the items are randomly sequenced. For each item in an

verlapped configuration, and for each admissible orientation, the

bstruction map is created on line 8. After a map is constructed,

 full search is performed to find the current minimum overlap

alue. When a minimum is found, the position and orientation of

he item are immediately updated on line 11 and line 12, respec-

ively. As the map construction does not depend on the current

tem (see Eq. (7) ), it can be updated immediately and no other

eatures need to be recalculated. As an improvement, the created

bstruction maps can be stored in a cache and be later retrieved

n line 8 to reduce the number of operations. 

.1.3. Multiresolution search 

Finding the new position for an item has usually the highest

omputational cost among all the operations in an overlap mini-

ization algorithm. As such, its performance heavily impacts the

pplicability of the proposed approach. When the placement of

tems is not continuous, the computational load is reduced by lim-

ting the number of grid points. On the one hand, increasing the

rid size in a raster approach limits the search space. On the other

and, it may adversely impact the final solution. Therefore, the

ultiresolution search is proposed to accelerate the search of the

inimum obstruction map position while minimizing the impact

n the quality of the final solution. 

The multiresolution search is performed in two steps. Initially,

n obstruction map with lower resolution, i.e. larger grid step, is
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Fig. 7. Obstruction map determination. The item whose placement is being evaluated is the movable item. 

Fig. 8. Item placement using the obstruction map. 
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Algorithm 4 ModifySolution (v,o). 

1: n ← number of items 

2: Q ← random item sequence 

3: for each P k ∈ Q do 

4: cur rentO v er lap ← 

∑ n 
j =1 , j � = k f k j 

5: if cur rentO v er lap � = 0 then 

6: minO v erlap = + ∞ 

7: for each orientation θ do 

8: M ← CreateObstructionMap ( P k , θ , v, o, G) 

9: for each (pos, ov erlap) ∈ M do 

10: if ov er lap < minO v er lap then 

11: v k = pos 

12: o k = θ
13: minO v er lap ← ov er lap 

14: end if 

15: end for 

16: end for 

17: end if 

18: end for 

r  

s  

β  

g  

c  

t  

i

 

d  

t  

o  
reated and its minimum position is determined. This position is

efined as the center of a new reduced map with the original res-

lution, which is then searched to obtain the final item placement.

s the higher resolution map is only locally determined and the

ower resolution map is faster to determine, this search process can

e significantly quicker than the original. Fig. 9 shows an example

f a multiresolution search. 

If the grid step for the lower resolution is a multiple of the

riginal, the obstruction map search can be performed using the

riginal set of raster penetration maps. Then, only a fraction of the

riginal obstruction map is calculated at each iteration. 

Algorithm 5 , which replaces Algorithm 4 , describes the mul-

iresolution search using two resolutions, which have an integer
atio. There are two important parameters for the multiresolution

earch algorithm: lower resolution grid G l and neighborhood size

for the refined search. The function SquareAt (posl, β, G) aggre-

ates all the original grid points G contained inside a rectangle

entered at posl with size β . If β is equal to the original grid step,

he entire search space is considered and, thence, no placement is

gnored. 

Contrary to the original proposal, the multiresolution search

oes not guarantee that the global minimum grid position is ob-

ained. However, the gain in performance may justify the adoption

f the multiresolution approach, as more iterations are performed
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Fig. 9. Example of a multiresolution search. 

Algorithm 5 FastModifySolution (v,o). 

n ← number of items 

Q ← random item sequence 

for each P k ∈ Q do 

cur rentO v er lap ← 

∑ n 
j =1 , j � = k f k j 

if cur rentO v er lap � = 0 then 

minOverlap = + ∞ 

for each orientation θ do 

minLowerOverlap = + ∞ 

M ← CreateObstructionMap ( P k , θ , v, o, G l ) 
for each (pos, ov erlap) ∈ M do 

if ov er lap < minLower O v er lap then 

minLower O v er lap ← ov er lap 

posl = pos 

end if 

end for 

for each pos ∈ SquareAt (posl, β, G) do 

ov erlap ← M (P k , pos, angl, v , o) 
if ov er lap < minO v er lap then 

x k = pos 

o k = θ
minO v er lap ← ov er lap 

end if 

end for 

end for 

end if 

end for 
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and, consequently, the space may be more thoroughly searched for

the same execution time. 

6. Results 

The raster overlap minimization algorithm (ROMA) was devel-

oped to implement the proposed approach. Three parameters are

used by the ROMA to solve an irregular strip packing problem.
n order to execute the tests, compaction parameters r dec and r inc 

shown in Algorithm 1 ) were defined as 0.04 and 0.01, respectively.

or the separation strategy, the N mi (shown in Algorithm 2 ) was

et to 200 iterations. These values were also adopted by other al-

orithms ( Elkeran, 2013; Imamichi et al., 2009 ). 

Two groups of instances were tested using the ROMA: the dot-

ed board instances and the adapted benchmark instances. The

otted board instances are the only available irregular strip pack-

ng instances with discrete placement in the literature and have

nown optimum in some cases. The classic benchmark instances

ere adapted with grid placement to better evaluate the perfor-

ance of the ROMA. Unless stated otherwise, the grid for the ras-

erization and item placement was defined as a square grid with

ides of size one. For each instance, independently of the group,

he algorithm was executed 30 times. 

The software was coded in C++ and generated using the Mi-

rosoft Visual Studio 12 compiler and was tested on a Core i9-

900X CPU, with 10 cores and 32GB of memory. The tests were

erformed on a single core, with the exception of the prepro-

essing stage. Some implementation optimizations were applied

o achieve faster processing. One such improvement was that all

aster penetration maps are read during the initialization and

tored in the memory during execution. Furthermore, for each

tem, the last generated obstruction map is cached such that, in

he next iteration, it may be reused. 

The preprocessing stage was implemented as a separate mod-

le and its execution time is not accounted for in the tests. The

esults from this module can be saved once and then loaded for

ach run and, therefore, are only calculated once for each instance.

s the raster penetration maps can be individually generated, the

reprocessing is parallelized using the maximum number of cores

vailable by the processor. 

.1. Dotted board instances 

In Toledo et al. (2013) , a mathematical solver for the irregular

trip packing problem was proposed using the dotted board model.

t was employed to optimally solve modified benchmark instances
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Fig. 10. Best ROMA solutions for the dotted board instances. 

Table 1 

Dotted board model instances data. TNI : total number of items. NIT : number of 

item types. AO : admissible orientations. PPT : preprocessing time. 

Case TNI NIT AO PPT (s) 

RCOn 7n 7 0 ◦ 0.04 

BLAZEWICZn 7n 7 0 ◦ 0.06 

SHAPES2 8 5 0 ◦ 0.03 

SHAPES4 16 5 0 ◦ 0.03 

SHAPES5 20 5 0 ◦ 0.03 

SHAPES7 28 5 0 ◦ 0.03 

SHAPES9 34 5 0 ◦ 0.03 

SHAPES15 43 5 0 ◦ 0.03 
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f the irregular strip packing problem. Hence, this set of problems

ay provide a good measure of quality for the proposed approach.

able 1 shows some of the attributes of the problems. The time

imit of ROMA was set to the maximum between the value re-

orted by Toledo et al. (2013) and 5 minutes. 

The results for the dotted board model cases are displayed in

able 2 . The length average and variance were obtained by per-

orming 30 executions of the algorithm. The last column shows the

esults reported in Toledo et al. (2013) , which used a mathematical

olver and ran on a workstation with two six-core Xeon 3.47 GHz

rocessors. The marked results indicate global optimum values. It

an be observed that, for all those cases, the ROMA obtained an

ptimal solution. For the other instances, the best compaction rate

as equal to or higher for all the executions. The best solutions

btained by the ROMA are shown in Fig. 10 . 

.2. Benchmark instances 

The classic strip packing benchmarks offer a more varied and

omplex group of instances and were massively tested with other

olutions in the literature. Therefore, these instances may be more

dequate to evaluate the ROMA, as it was able to solve all the dot-

ed board instances with the known solution. In order to adapt the

nstances to the ROMA, a square grid with a step size of one was

pplied to the benchmark instances. 
The benchmark cases consist of 15 instances of varying lev-

ls of complexity, as shown in Table 3 . Most cases admit more

han one orientation, in multiples of 90 ◦. The second to last col-

mn displays the total preprocessing time using 10 cores, which

ncludes the generation of all nofit polygons and raster penetration

aps. The preprocessing times were insignificant when compared

o execution times for strip packing solutions, which usually range

rom 600 to 1200 seconds. The last column shows the memory re-

uirements to store all the preprocessed raster penetration maps.

t should be noted that such requirements may be reduced by ex-

loring nofit polygon symmetries. 

The parameters for the ROMA were set to the values used for

he dotted board instance tests. For each instance, a time limit of

0 0 or 120 0 seconds was imposed, subject to the complexity of

he case. Table 4 displays the results, including the density average

nd variance for the 30 executions. It also contains results data for

he GCS ( Guided Cuckoo Search ) ( Elkeran, 2013 ) algorithm, which

utperforms all the other solutions in the literature. 

ROMA obtained the best compaction for the Marques instance,

ith an increase of 0.43%. Moreover, ROMA obtained densities

qual to the best obtained by the GCS for 6 instances. As for the

emaining cases, most are very competitive, with a difference in-

erior to 1.0%. The most underperforming cases involved the Al-

ano, Mao, Swim and Shapes2 instances. The first three instances

re more challenging for a dotted board approach, as the number

f grid points is notably larger than the other instances. When the

verage densities are analyzed, ROMA improved upon the GCS re-

ults in 10 instances. Another noticeable behavior of the ROMA is

he low variance for most cases, with the exception of the three

ost complex instances (Albano, Mao, Swim). 

.3. Multiresolution results 

The adoption of a square grid with size one is usually an ad-

quate choice for most benchmark instances, as indicated by the

esults from the benchmark tests. Nonetheless, a more refined grid

llows for better exploring the solution space and may lead to im-

roved results. The main drawback of improving the resolution of

he dotted board is that the local search may become considerably
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Table 2 

Minimum lengths obtained for the dotted board model benchmark cases. 

Case ROMA i9 3.3 GHz (30 runs) Toledo et al. (2013) Xeon 3.47 GHz 

Average Variance Best Time (s) Best Time (s) 

RCO1 8.00 0.03 8 0.62 8 a 0.62 

RCO2 15.00 0.00 15 6.28 15 a 6.28 

RCO3 22.00 0.00 22 30 0.0 0 22 a 2393.42 

RCO4 29.00 0.00 29 30 0.0 0 29 180 0 0.0 0 

RCO5 36.33 0.24 36 30 0.0 0 37 180 0 0.0 0 

BLAZEWICZ1 8.03 0.00 8 0.69 8 a 0.69 

BLAZEWICZ2 14.00 0.00 14 15.98 14 a 15.98 

BLAZEWICZ3 20.23 0.20 20 30 0.0 0 20 a 5583.82 

BLAZEWICZ4 27.10 0.20 27 30 0.0 0 28 180 0 0.0 0 

BLAZEWICZ5 34.00 0.00 34 30 0.0 0 35 180 0 0.0 0 

SHAPES2 14.03 0.03 14 0.45 14 a 0.45 

SHAPES4 25.00 0.00 25 30 0.0 0 25 a 17951.33 

SHAPES5 29.00 0.00 29 30 0.0 0 30 180 0 0.0 0 

SHAPES7 40.00 0.03 40 30 0.0 0 45 180 0 0.0 0 

SHAPES9 46.43 0.24 46 30 0.0 0 54 180 0 0.0 0 

SHAPES15 58.60 0.26 58 30 0.0 0 67 180 0 0.0 0 

a optimal result. 

Table 3 

Benchmark instances data. TNI : total number of items. NIT : number of item types. 

ANV : average number of vertices. AO : admissible orientations. PPT : preprocessing 

time. 

Case TNI NIT ANV AO Preprocessing 

Time (s) Size (MB) 

Albano 24 8 7.25 0 ◦ , 180 ◦ 11.05 8,110.54 

Dagli 30 10 6.30 0 ◦ , 180 ◦ 0.06 0.71 

Dighe1 16 16 3.87 0 ◦ 0.04 4.81 

Dighe2 10 10 4.70 0 ◦ 0.03 2.37 

Fu 12 12 3.58 0 ◦ , 90 ◦ , 180 ◦ , 270 ◦ 0.10 2.49 

Jakobs1 25 25 5.60 0 ◦ , 90 ◦ , 180 ◦ , 270 ◦ 0.27 1.83 

Jakobs2 25 25 5.36 0 ◦ , 90 ◦ , 180 ◦ , 270 ◦ 0.44 8.36 

Mao 20 9 9.22 0 ◦ , 90 ◦ , 180 ◦ , 270 ◦ 7.20 5,643.72 

Marques 24 8 7.37 0 ◦ , 90 ◦ , 180 ◦ , 270 ◦ 0.19 5.67 

Shapes0 43 4 8.75 0 ◦ 0.02 0.02 

Shapes1 43 4 8.75 0 ◦ , 180 ◦ 0.03 0.05 

Shapes2 28 7 6.29 0 ◦ , 180 ◦ 0.05 0.04 

Shirts 99 8 6.63 0 ◦ , 180 ◦ 0.05 0.14 

Swim 48 10 21.90 0 ◦ , 180 ◦ 11.19 3,900.05 

Trousers 64 17 5.06 0 ◦ , 180 ◦ 0.10 2.52 
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ROMA. 
slow. As it directly impacts the obstruction map search, the mul-

tiresolution strategy is then a fitting approach for higher resolution

versions of the benchmark instances. 

In order to ensure that item vertices always coincide with grid

points, g o , the size of the refined instance grid G, must be in
Table 4 

Densities for the strip packing benchmark instances, 

literature are highlighted in bold. Avg : average. Var : va

Case ROMA i9 3.3 GHz (30 runs) 

Best % Avg % Var % Time (s) 

Albano 85.72 82.66 4.60 1200 

Dagli 88.73 87.25 0 1200 

Dighe1 10 0.0 0 10 0.0 0 0 600 

Dighe2 10 0.0 0 10 0.0 0 0 600 

Fu 91.94 91.94 0 600 

Jakobs1 89.09 89.09 0 600 

Jakobs2 87.73 82.53 3.99 600 

Mao 83.61 81.08 1.31 1200 

Marques 91.02 89.87 0.05 1200 

Shapes0 68.79 68.72 0.09 1200 

Shapes1 76.73 75.86 0.52 1200 

Shapes2 80.00 80.00 0 1200 

Shirts 88.52 87.29 0.24 1200 

Swim 73.23 70.37 1.22 1200 

Trousers 90.75 90.36 0.03 1200 
he form of 1/ n , where n is an integer. For the tests performed

ith most benchmark cases, 1 ≤ n ≤ 10. Due to memory restric-

ions, the Albano, Mao and Swim instances were only executed

ith the original grid. In these cases, the multiresolution was ap-

lied to improve the speed of the algorithm, which negatively in-

uenced previous results. Therefore, for the multiresolution ex-

eriments, two test groups are defined: the accelerated instances

Albano, Mao and Swim) and the refined instances (the remaining

ases). 

There are two additional parameters needed for the multires-

lution approach. The neighborhood for the refined search, con-

rolled by parameter β , is set to the value of the original grid size

 o , allowing for fully exploring the search space. Parameter g l is

he grid size of the lower resolution grid G l and dictates the size

f the obstruction map. In the case of the refined instances, the

nitary grid size g l = 1 was adopted, as it achieved good results in

he original ROMA tests. Nine g l values were tested for the accel-

rated instances: 2, 4, 8, 16, 32, 64, 128, 256 and 512. The graph

rom Fig. 11 plots the average density obtained for 30 executions of

ach accelerated instance with varying g l values and a time limit of

200s. The best results among all the variants of ROMA and tested

rid sizes are shown in Table 5 and in Table 6 , which contain

he best overall densities and the best average densities obtained,

espectively. Fig. 12 displays the most compact layouts obtained by
given in percentage. The best densities in the 

riance. 

GCS ( Elkeran, 2013 ) i7 2.2 GHz (10 runs) 

Best % Avg % Time (s) 

89.58 87.47 1200 

89.51 87.06 1200 

10 0.0 0 10 0.0 0 600 

10 0.0 0 10 0.0 0 600 

92.41 90.68 600 

89.09 88.90 600 

87.73 81.14 600 

85.44 82.93 1200 

90.59 89.40 1200 

68.79 67.26 1200 

76.73 73.79 1200 

84.84 82.40 1200 

88.96 87.59 1200 

75.94 74.49 1200 

91.00 89.02 1200 
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Fig. 11. Average densities of the original instances for different g l values. 

Table 5 

Maximum densities for the strip packing benchmark instances obtained by the ROMA and other best solutions in the literature. 

Instance ROMA i9 3.3 GHz (30 runs) GCS i7 2.2 GHz (10 runs) FLD i5 2.6 GHz (10 runs) ELS Pentium4 2.4 GHz (10 runs) 

Best % g o g l Time (s) Best % Time (s) Best % Time (s) Best % Time (s) 

Albano 89.06 1 64 1200 89.58 1200 89.07 1200 88.48 1203 

Dagli 88.73 1 1 1200 89.51 1200 88.20 1200 88.11 1205 

Dighe1 10 0.0 0 1 1 600 10 0.0 0 600 10 0.0 0 1200 10 0.0 0 601 

Dighe2 10 0.0 0 1 1 600 10 0.0 0 600 10 0.0 0 1200 10 0.0 0 600 

Fu 92.31 1/8 1 600 92.41 600 92.11 1200 91.94 600 

Jakobs1 89.09 1 1 600 89.09 600 89.09 1200 89.09 603 

Jakobs2 87.73 1 1 600 87.73 600 85.25 1200 83.92 602 

Mao 86.05 1 16 1200 85.44 1200 84.03 1200 84.33 1204 

Marques 91.02 1 1 1200 90.59 1200 88.89 1200 89.73 1204 

Shapes0 68.79 1 1 1200 68.79 1200 68.79 1200 67.63 1207 

Shapes1 76.73 1 1 1200 76.73 1200 74.65 1200 75.29 1212 

Shapes2 83.61 1/6 1 1200 84.84 1200 1200 84.23 1205 

Shirts 88.52 1 1 1200 88.96 1200 88.96 1200 88.40 1293 

Swim 75.66 1 128 1200 75.94 1200 75.48 1200 75.43 1246 

Trousers 91.06 1/5 1 1200 91.00 1200 90.35 1200 89.63 1237 

Table 6 

Average densities for the strip packing benchmark instances obtained by ROMA and other best solutions in the literature. 

Instance ROMA i9 3.3 GHz (30 runs) GCS i7 2.2 GHz (10 runs) FLD i5 2.6 GHz (10 runs) ELS Pentium4 2.4 GHz (10 runs) 

Best % g o g l Time (s) Best % Time (s) Best % Time (s) Best % Time (s) 

Albano 87.55 1 128 1200 87.47 1200 88.01 1200 87.38 1203 

Dagli 87.50 1/6 1 1200 87.06 1200 87.14 1200 86.27 1205 

Dighe1 10 0.0 0 1 1 600 10 0.0 0 600 10 0.0 0 1200 91.61 601 

Dighe2 10 0.0 0 1 1 600 10 0.0 0 600 10 0.0 0 1200 10 0.0 0 600 

Fu 91.95 1/8 1 600 90.68 600 91.17 1200 90.00 600 

Jakobs1 89.09 1 1 600 88.90 600 88.96 1200 88.35 603 

Jakobs2 83.56 1/2 1 600 81.14 600 83.41 1200 80.97 602 

Mao 83.76 1 64 1200 82.93 1200 82.28 1200 82.57 1204 

Marques 89.97 1/5 1 1200 89.40 1200 88.38 1200 88.32 1204 

Shapes0 68.73 1/2 1 1200 67.26 1200 67.39 1200 66.85 1207 

Shapes1 75.86 1 1 1200 73.79 1200 73.91 1200 74.24 1212 

Shapes2 83.02 1/6 1 1200 82.40 1200 1200 82.55 1205 

Shirts 87.62 1/4 1 1200 87.59 1200 88.21 1200 87.20 1293 

Swim 74.29 1 64 1200 74.49 1200 74.66 1200 74.10 1246 

Trousers 90.48 1 1 1200 89.02 1200 89.17 1200 88.29 1237 
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The results for the multiresolution variant of the ROMA for the

efined instances improved upon 3 best and 7 average compactions

rom the original algorithm. The accelerated instances results were

ven better, outperforming the single resolution ROMA every time.

Tables 5 and 6 also show a comparison with the five best

olutions in the literature. These were selected by analyzing

4 approaches ( Amaro Júnior et al., 2017; Amaro Júnior, Pin-

eiro, Saraiva, & Pinheiro, 2014; Bennell & Song, 2010; Burke

t al., 2006; Egeblad et al., 2007; Elkeran, 2013; Hu, Fukatsu,

ashimoto, Imahori, & Yagiura, 2018; Imamichi et al., 2009; Le-

ng et al., 2012; Mundim et al., 2017; Pinheiro et al., 2016; Sato

t al., 2012; 2015; Wang, Xiao, & Wang, 2017 ). The puzzle cases

ighe1 and Dighe2 are solved to optimality by several solutions
 Amaro Júnior et al., 2017; Amaro Júnior et al., 2014; Bennell

 Song, 2010; Elkeran, 2013; Leung et al., 2012; Mundim et al.,

017; Pinheiro et al., 2016; Sato et al., 2012; Wang et al., 2017 )

nd the same density is repeatedly achieved for the Jakobs1 in-

tances ( Amaro Júnior et al., 2017; Elkeran, 2013; Leung et al.,

012; Mundim et al., 2017; Wang et al., 2017 ). For all the other in-

tances, the best layouts were obtained by GCS. Other important

esults derived from the flexible labour division (FLD) approach

rom Wang et al. (2017) , which achieved the maximum density

qual to the GCS for 4 instances, and by the extended local search

ELS) algorithm ( Leung et al., 2012 ), with 4 best tied results. There-

ore, these three strategies – GCS, FLD and ELS – are contemplated

n the comparison study. 
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Fig. 12. ROMA best solutions for the benchmark instances. 
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When contrasted with the best solutions in the literature, the

multiresolution ROMA showed to be very competitive. It achieved

9 out of 15 better or equal compactions for the benchmark

instances among the best known solutions. One special men-

tion among the non-improved cases is the Fu instance, whose

most compact layout is visually similar to the solution obtained

by Elkeran (2013) . The small gap in density is due to the grid

placement limitation, which forces the placement of some items

slightly to the right of the layout. Moreover, it obtained the best

average densities for 13 instances, which attests to its consistency. 

6.4. Computational performance discussion 

The ROMA obtained very good results when compared with

other solutions in the literature. However, it is difficult to assess
he quality of the results, as other solutions were executed in ma-

hines with different computational capabilities. In particular, the

PU used for the ROMA testing is vastly superior to the others

dopted in the literature. Therefore, in order to enhance the com-

arison analysis, a computational performance study of the ROMA

as conducted. 

During the execution of the ROMA tests, the utilization of the

olutions was determined at each 60-second interval and the av-

rage density of all the 30 executions was determined. This pro-

edure is equivalent to adopting smaller time limits. Adopting the

arameters shown in Table 6 , the differences between the average

ensities obtained by sampling the ROMA and the best in the lit-

rature were calculated, and are shown in Figs. 13 and in 14 . From

hese graphs, it is possible to affirm that the 12 best results could

e obtained by adopting a time limit of 480 seconds. The only
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Fig. 13. Difference between the best compaction in the literature and the ROMA utilization for different time limits. 

Fig. 14. Difference between the best compaction in the literature and the ROMA utilization for different time limits. 

Fig. 15. Average relative gap (density distance to the best solution) for execution with different time limits. Error bars represent the standard deviation. 
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nstance which required more time to surpass the best average

ompaction is Jakobs2. Moreover, a convergence study was con-

ucted for the cases with a 1200-second time limit, which shows

imilar tendencies in Fig. 13 . It resulted in the graph from Fig. 15 ,

hich displays the average density difference of all the 10 in-

tances to the final compaction for different time limits. It can

e noted that the difference and the deviation decreases more in-

ensely in the first half of the execution. This is further evidence
hat a reduced time limit does not greatly impact the results for

hese cases. 

.5. Terashima instances 

Terashima-Marín, Ross, Farías-Zárate, López-Camacho, and 

alenzuela-Rendón (2010) artificially generated a large set of ir-

egular instances for the 2D bin packing problem. A total of 540
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Table 7 

Terashima instances data and results. TNI : total number of items. 

Type Width Optimal Length TNI Avg Best % Convergence rate 

Type A 10 0 0 30 0 0 30 94.29 0.00 

Type B 10 0 0 10 0 0 0 30 99.92 76.67 

Type C 10 0 0 60 0 0 36 94.72 3.33 

Type D 10 0 0 30 0 0 60 86.45 0.00 

Type E 10 0 0 30 0 0 60 86.31 0.00 

Type F 10 0 0 20 0 0 30 95.13 10.00 

Type G 10 0 0 unknown 36 94.35 - 

Type H 10 0 0 120 0 0 36 99.24 53.33 

Type I 10 0 0 30 0 0 60 93.33 0.00 

Type J 10 0 0 40 0 0 60 90.36 0.00 

Type K 10 0 0 60 0 0 54 95.21 3.33 

Type L 10 0 0 30 0 0 30 99.31 40.00 

Type M 10 0 0 50 0 0 40 96.47 6.67 

Type N 10 0 0 20 0 0 60 87.78 0.00 

Type O 10 0 0 70 0 0 28 99.94 80.00 

Type P 10 0 0 80 0 0 56 91.40 0.00 

Type Q 10 0 0 150 0 0 60 94.55 0.00 

Type R 10 0 0 90 0 0 54 92.98 0.00 
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instances were created using a “broken glass” approach, in which

the items are generated by sequentially dividing the container us-

ing straight cuts. Thus, the known optimal solution for each case

is known. The generator was able to control some aspects, such

as the size variability and the irregularity of items and, through

these parameters, 18 groups of 30 instances were defined as types

A-R. No rotation is allowed and there is only a single item of each

type. The instances were adapted to the strip packing problem by

ignoring the container data, replacing it with a bin of the same

width and a variable length. Table 7 shows the characteristics of

the modified instances. 

Due to the large containers, the Terashima instances have sub-

stantial memory and processing requirements for the ROMA, akin

to the accelerated instances from the benchmark cases. Therefore,

the multiresolution approach was executed with the original grid

and the g l parameter was determined through an extensive inves-

tigation: one instance of each type was executed for 10 minutes

with different resolutions of the finer grid ( g l = 2 1 , 2 2 , . . . , 2 9 ) . The

result of these evaluations was that the value of 32 was chosen for

this parameter, as it yielded the best average compaction. 

For the Terashima instances experiments, ten executions of each

instance were performed with a time limit of 1200 seconds. For

each instance, the best result was recorded and used to determine

the average type density. These results are compiled in Table 7 ,

where the last column represents the percentage of the instances

in which the optimal solution was achieved. Although the conver-

gence rate was low for most of the types, the average density was

considerably high – more than 90 % in 15 cases. Note that the strip

packing version is more difficult to solve than the original cases.

Moreover, the low irregularity combined with the high resolution

of the instances are disadvantageous characteristics for the ROMA.

Nevertheless, the results for the Terashima instances further ex-

pand on the investigation of the ROMA and also serve as basis for

further comparisons. 

7. Conclusion 

The raster overlap minimization algorithm (ROMA) was devel-

oped to solve the irregular strip problem using a raster method

that limits the solution space. A placement grid was adopted to

limit the positioning of items and an overlap minimization ap-

proach was adopted to simplify the multiple objective problem.

Using the obstruction map, a complete investigation of the place-

ment space was performed for each item, which is generally not

possible when using a continuous space for placements. The pro-
osed raster overlap map transfers much of the computational load

f overlap determination to a preprocessing stage. The preprocess-

ng step was parallelized and, for every instance, the execution

ime was minimal when compared to the time limit established

or the ROMA algorithm. 

Two sets of instances were tested using the proposed ROMA.

he comparison performed with a mathematical approach solution

sing the dotted board instances showed that ROMA was always

ble to find the optimal solution. Tests using benchmark cases for

he irregular strip packing problem yielded competitive solutions,

roducing solutions equally or more compact layouts for 9 out of

5 instances, including 3 best solutions in the literature. 

Although different grid sizes were tested for each case, most of

he best solutions were obtained using a grid step equal to one,

ith few exceptions. The multiresolution search, proposed to ac-

elerate the algorithm, was notably useful in three instances, in

hich the original grid had a large number of points. Nevertheless,

o obtain good performance with such instances, the lower resolu-

ion parameter had to be manually calibrated. The results, however,

ndicate that it might be possible to automatically detect its value,

implifying the parameter definition in such cases. Overall, good

ompaction for irregular packing was obtained by the ROMA even

ith a very constrained placement space. These results show the

otential of applying similar approaches to other irregular packing

roblems. 
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